
Transport-of-intensity phase imaging using 
Savitzky-Golay differentiation filter - theory and 

applications 
Chao Zuo,1,2,3,* Qian Chen,1,3 Yingjie Yu,4 and Anand Asundi2 

1Jiangsu Key Laboratory of Spectral Imaging & Intelligence Sense, Nanjing University of Science and Technology, 
Nanjing, Jiangsu Province 210094, China 

2Centre for Optical and Laser Engineering, School of Mechanical and Aerospace Engineering, Nanyang 
Technological University, Singapore 639798, Singapore 

3Key Laboratory of Photoelectronic Imaging Technology and System, Ministry of Education of China, Beijing 
Institute of Technology, Beijing 100081, China 

4Department of Precision Mechanical Engineering, Shanghai University, Shanghai 200072, China 
*surpasszuo@163.com 

Abstract: Several existing strategies for estimating the axial intensity 
derivative in the transport-of-intensity equation (TIE) from multiple 
intensity measurements have been unified by the Savitzky-Golay 
differentiation filter - an equivalent convolution solution for differentiation 
estimation by least-squares polynomial fitting. The different viewpoint from 
the digital filter in signal processing not only provides great insight into the 
behaviors, the shortcomings, and the performance of these existing intensity 
derivative estimation algorithms, but more important, it also suggests a new 
way of improving solution strategies by extending the applications of 
Savitzky-Golay differentiation filter in TIE. Two novel methods for phase 
retrieval based on TIE are presented - the first by introducing adaptive-
degree strategy in spatial domain and the second by selecting optimal 
spatial frequencies in Fourier domain. Numerical simulations and 
experiments verify that the second method outperforms the existing 
methods significantly, showing reliable retrieved phase with both overall 
contrast and fine phase variations well preserved. 
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1. Introduction 

Phase measurement plays a prominent role in many fields of physics, such as optics [1], 
electron- and X-ray microscopy [2, 3], diffraction [4]. Many samples such as optical 
elements, biological soft tissues, and cells are phase objects with little intensity variation for 
conventional brightfield microscopic imaging. Digital holography, as a paradigm of 
interferometric techniques is the primary quantitative technique for phase reconstruction with 
sub-wavelength accuracy [5]. Recently, however, direct phase retrieval from intensity 
measurements using the Transport-of-intensity equation (TIE) [6, 7] derived from the free 
space Helmholtz wave equation in the paraxial wave approximation has gained increasing 
attention. The TIE-based method has the advantages of being non-interferometric [1], not 
needing phase unwrapping [8], and applicable with partially coherent beams [9, 10]. Thus 
phase reconstruction is now available over wide range of light- and electron-beam imaging 
systems without significant hardware modification and complicated computation [11, 12]. 

TIE has its basis in the relationship between phase and the first derivative of intensity 
along the optical axis. Therefore, an accurate estimate of intensity derivative should be 
obtained in order to solve the partial differential equation. However, the intensity derivative 
along the optic axis cannot be directly measured. Conventionally, the TIE approach involves 
recording two out-of-focus images, which usually being recorded symmetrically over- and 
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under-focused by the same focal step from the in-focus image [13–15]. These are then used to 
approximate the derivative of the image intensity in the direction of the beam propagation. 
However, the axial intensity derivative approximated by the finite difference method from 
two intensity measurements only achieves a maximum of second-order precision with respect 
to the separation of the adjacent intensity measurements under no noise condition [13, 15]. 
When noise exists which is natural, this method is rather vulnerable, necessitating large 
defocus distances in order to increase the signal-to-noise ratio (SNR) at the expense of phase 
resolution [14]. To overcome this difficulty, intensity measurements in multiple planes have 
been proposed to minimize the effect of the noise on the retrieved phase [16], reduce the 
impact of the higher order axial intensity derivatives [15, 17], or both [17, 18]. In addition, 
these methods have been extended to the situation in which the intensity is measured in 
unequally-spaced planes [19, 20]. While these strategies have been shown to work well in 
many situations, their performance, however, depends heavily on the noise level and the 
characteristics of the experimental data [18, 20]. With a given set of intensity measurements, 
making an appropriate choice of a suitable algorithm is difficult. Besides, a comprehensive 
framework to better understand and, potentially, to improve existing derivative estimation 
algorithms is still lacking. 

The aim of this paper is to show that great insight can be gained into the properties, the 
shortcomings, and the performance of these existing intensity derivative estimation 
algorithms by unifying them into the category of Savitzky-Golay filter. Specifically, it is 
shown that all the above mentioned methods can be viewed as special cases of the Savitzky-
Golay differentiation filter. Based on these findings, two novel phase retrieval algorithms that 
extend the applications of the Savitzky-Golay differentiation filters in TIE are introduced. 
The adaptive-degree Savitzky-Golay differentiation filter method makes possible the choice 
of the distinct filter degree in different part of the intensity image. The second algorithm, 
which we call it optimal frequency selection automatically chooses the best parts of the 
phases obtained from Savitzky-Golay differentiation filters with various degrees by frequency 
decomposition. Extensive numerical studies and experiments are carried out to confirm and 
validate the proposed approaches. 

2. Problem formulation 

2.1 Transport of intensity equation 

With the paraxial approximation, the derivative of intensity in the light propagation direction 
contains phase information that can be retrieved via TIE [6]: 

 
( ) ( ) ( ) ,φ

∂
− = ∇ ⋅ ∇  ∂

I
k I

z

r
r r  (1) 

Where k  is the wave number 2π λ , r is the position vector representing the spatial 
coordinates ( ),x y . ∇ is the gradient operator over r . z denotes the optical axis, 
perpendicular to the -x y  plane. The intensity derivative ( )∂ ∂I zr  is commonly obtained by 
an intensity difference between two side planes, separated by Δz  [13, 14] 

 
( ) ( ) ( ), ,

,
2

∂ Δ − −Δ
≈

∂ Δ
I I z I z

z z

r r r
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This simple central difference formula gives the estimate of the derivative, where the error is 
the second order of the focus distance if the data are noise-free. Mathematically, the smaller 
the defocus distance is, the more accurate the Eq. (2) can be approximated to the ideal 
derivative. However, real measurements yield data with noise and discretization which does 
not allow Δz  to be too small. Thus a compromise is made where Δz  is chosen to balance the 
high-order (or non-linearity) error and the noise effect [14]. Specifically, the optimal Δz  is 
dependent on both the maximum physically significant frequency of the object and the noise 
level [21]. A priori knowledge of these two aspects is difficult not be known in advance. 
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2.1 Multiple-plane schemes for derivative estimation 

To improve the accuracy of derivative estimation, multiple-plane schemes are proposed by 
taking the non-linearity error or/and noise effect into account. The high-order finite difference 
method was first used by Ishizuka and Allman [15] and more recently generalized by Waller 
et al. [17]. For symmetric differencing, i.e., given a data set ( ), , ,...,0,..., .Δ = −I i z i n nr  The 
high-order finite difference method using a Taylor expansion has the form 

 
( ) ( ),

,
=−

∂ Δ
≈

∂ Δ
n

i

i n

I a I i z

z z

r r
 (3) 

with coefficients [22] 
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It is also possible to vary the defocus distance Δz  [19]. To do so, one replaces Δz  by 
( )δ = Δ ∈ Νz l z l and i  by ′ =i li in Eq. (3). By changing l , the defocus distance δ z of 

different plane can be varied. In the following, we only consider the condition that the 
measured planes are spaced equally and symmetrically from the center plane. 

Without considering the effect of noise, the estimation error of Eq. (3) is of order 
( )2Δ nO z  by using 2n  images. However, as with the two-plane method, one is faced with the 

unavoidable problem of noise and the quantitation error. To reduce the effect of noise, Soto 
and Acosta [16] proposed a noise-reduction finite difference formula which with coefficients 

 
( )( )

3
.

1 2 1
=

+ +i

i
a

n n n
 (5) 

The coefficients are derived by minimizing the noise effect (more specifically, the noise 
reduction ratio (NRR) [23] defined by 2

=− n

ii n
a ) while ignoring the effect of all high-order 

terms in the Taylor expansion. The high-order finite difference indicates that the planes close 
to the center have to assume much larger weight than the ones further away, while the noise-
reduction method makes the coefficients to be distributed as evenly as possible. Therefore, 
these two methods are contradictory in a sense. To balance this contradiction, Bie et al. [18] 
presented a higher order finite difference with noise-reduction which blends these two 
methods together, taking both the higher-order terms and noise effect into account. For the 
data from 2 1+n  planes, the high-order terms are cancelled until mth order ( 2 1< +m n ), 
leaving some degree of freedom for noise suppression. In [18], the author did not give the 
explicit formula of these coefficients but showed the problem is well-posed when 2 1< +m n . 

Besides these explicit finite difference methods, Waller et al. [17] recommended using a 
least-squares fitting method to estimate the first order derivative. Because the least-squares 
fitting process weights all data equally, and the high-order polynomial fitting conserves the 
non-linear component of the original data, so both the higher order and noise effect can be 
treated simultaneously. 

2.2 Main connections with Savitzky-Golay filters 

After reviewing those multiple-plane schemes, one issue that arises is that it is not easy to 
determine which method should be used and is there any interrelation between these methods. 
Let us start with the Waller’s least-squares fitting method [17]. Given 2 1+n  data points 

[ ]{ } { }|Δ= − ≤ ≤i zI i I n i n , the least-squares polynomial of degree m  ( 2 1< +m n ) has the 
form 
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In the normal least-squares fitting procedure, the coefficients kb  are uniquely obtained by 
solving the normal equations of the Vandermonde system which minimize the sum of square 
of the residual (SSR), defined as ( ) [ ]{ }2

=−
= − n

m mi n
SSR P i I i . We then define a 2 1+n  by 

1+m  matrix { },α= i jA as the matrix with elements , , , 0,1,...,α = − ≤ ≤ =j
i j i n i n j m , the 

normal equations for the least-squares problem can be written in matrix form as 

 ,T TA Ab A I=  (7) 

Where vector { }[ ],..., [ 1], [0], [1],..., [ ]= − − T
I n I I I I nI and { }0 1, , ...,= T

mb b bb . The solution for 
the polynomial coefficients can thus be written as 

 ( ) 1
.

−T Tb A A A I = HI=  (8) 

The above formula gives all the polynomial coefficients { }0 1, , ...,= T

mb b bb . But the term of 
interest here is only the polynomial at 0=z . Specifically, the first order derivative evaluated 
at 0=z  requires an expression for coefficient 1b  only. This allows Eq. (8) to be reduced to 
an expression of the form 

 1 1, [ ],
=−

= 
n

i
i n

b h I n  (9) 

where 1,ih  is the element of the second row of H . An important observation is that the matrix 
H  is independent of the input samples. Thus, we can think of the first order derivative 
estimation using least-squares fitting as a shift-invariant discrete convolution process, which 
share the same format with finite difference. Indeed as early as 1964, Savitzky and Golay [24] 
showed that fitting a polynomial to a set of input samples and then evaluating the resulting 
polynomial at a single point within the approximation interval is equivalent to discrete 
convolution with a fixed impulse response. The filters, obtained by this method are widely 
known (especially among chemists) as Savitzky-Golay filters [24]. More generally, to 
evaluate the sth derivative at point t  using a polynomial of degree m  on 2 1+n  data points, 
the convolution weight at point i  can be calculated as [25] 
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where ( )( )b
a is a generalized factorial function ( )( ) ( )1 ... 1− − +a a a b , and ( )( )0

0=a , and the 
( )n

kP t is the Gram polynomials defined as 
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We are now ready to establish the correspondence between the different finite difference 
methods and the Savitzky-Golay differentiation filter (SGDF), i.e. least-squares fitting 
method. For the case that the center point is the evaluated point, the variable t  is set to zero. 
Let 1=s  for the 1st derivative, the weight becomes 
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Then we let the degree 2m n= , through proper simplification. Equation (13) can be reduced 
to 

 
( ) ( )

( ) ( )
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i n
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n i n i
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Compare it with Eq. (4), we then have: 
Observation 1: The high-order finite difference method corresponds to the SGDF with 

degree 2n . 
We now let the degree 1m = , Eq. (13) can be reduced to 

 
( )( )1,

3
.

1 2 1
=

+ +i

i
h

n n n
 (15) 

The next observation now appears evident; it establishes the correspondence between the 
Soto’s finite difference formula with Savitzky-Golay filter. 

Observation 2: The noise-reduction finite difference method corresponds to the SGDF 
with degree 1. 

So far, we may instinctively perceive that there should be a connection between Bie’s 
method with Savitzky-Golay filter, since the two parents it inherited from are both particular 
cases of SGDF. But we cannot just follow the above routine because there is no explicit 
formula for Bie’s method. Here we give this observation first and detailed prove will be given 
in Appendix A. 

Observation 3: The higher order finite difference with noise-reduction method 
corresponds to the SGDF with degree m  ( 2 +1<m n ). 

Finally, we have to mention that the unequally spaced multi-plane methods [19, 20] fall in 
the class of SGDF without exception, since the Savitzky-Golay filter has also been 
generalized for unequally or non-uniformly spaced data as its offspring [23, 25]. Even the two 
plane method (Eq. (2)) can be viewed as a special case of SGDF. 

2.3 Property of Savitzky-Golay differentiation filters 

In last subsection, all of the above derivative estimation strategies used in TIE are unified by 
the SGDF - an equivalent convolution solution for differentiation of data by a least-squares 
polynomial fitting. Therefore, it is necessary to examine the property of SGDF first. The 
SGDF have many good properties [26]: (1) the convolution operation is quite straightforward 
and much easier to implement than the standard least-squares fitting; (2) the coefficients can 
be easily obtained using a look-up table generated from the explicit solution, or pre-calculated 
using existing routines; (3) most importantly, they are the optimal differentiation filters that 
minimize the NRR, subject to moments preservation constraints [23]. 

To quantify the frequency domain properties of SGDF, we plot the frequency response of 
different degree SGDF with data points 2 1+n  = 31 in Fig. 1(a). The SGDF yields equivalent 
results for central point differentiation using odd polynomial degree and the next highest even 
degree, e.g., 1/2, 3/4, etc. The coefficients (impulse response) are anti-symmetric with the 
central weight always null. Therefore, the SGDF belongs to the type III FIR filter [23] that 
has a linear phase. With frequency response decomposition, a SGDF can be regarded as a 
combination of a low-pass filter and an ideal derivative filter: 

 ( ) ( ) ( ) ( ).
ω

ω ω ωω
ω

= =
j

SGj j j
SG ideal LP

H e
H e j H e H e

j
 (16) 

Similarly, a differentiation filtering on the signal can be regarded as calculating the 1st 
derivative on a smoothed version of the data. From the frequency response (in log scale) of 
the low-pass filter plotted in Fig. 1(b), it can be seen the filters have very flat frequency 
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response in their pass bands with modest attenuation in their stop bands. The frequency 
response of the SGDF is flatter and closer to the ideal derivative filter at low frequencies as 
the polynomial degree increases. The increase of the flatness is coincident with a relatively 
higher cut-off frequency or a wider low-pass range. Conversely, as the degree of fitting 
polynomial decreases, the effect of low-pass filter becomes more evident. 

 

Fig. 1. Frequency characteristics of SGDF for n = 15 and various polynomial degrees; (a) 
frequency response of the SGDF filter; (b) the frequency response of the low-pass filter behind 
the SGDF filter in Log magnitude. 

Another important issue is the accuracy of the derivative estimate using SGDF. For this 
prior information about the ideal signal is necessary to draw a reliable conclusion [16]. The 
Gauss–Markov theorem states that the mth degree SGDF is an unbiased estimator of the 
derivative, and can achieve the Cramer-Rao lower bound if the signal can be perfectly 
modeled by an m-order polynomial and the observed data are with independent Gaussian 
white noise [26]. However, in practice, the signal order is unknown and hence using a non-
optimal degree will inevitably affect the accuracy and the effect of noise reduction. So the 
problem now we facing is to choose a polynomial with proper degree which fit a data set best. 
This problem appears new but is in fact similar to one mentioned in subsection 2.2. Selecting 
a suitable multi-plane method is similar to determining the degree of the SGDF. 

3. Applications of SGDF in phase retrieval by TIE 

3.1 Derivative estimation using adaptive-degree SGDF 

To find the optimal degree of polynomial, one choice is to apply SGDF using various 
polynomial degrees to the same data set, and then to choose one or some combination. 
However, it is difficult to decide which polynomial degree yields the optimal data accuracy. 
Consider the case when the tested sample is a pure-phase object, then Eq. (1) reduces to a 
standard 2D Poisson equation [17, 27, 28]: 

 
( )

( ) ( )2 .φ
∂

− = ∇
∂
Ik

I z

r
r

r
 (17) 

It can be seen the intensity derivative along z-axis is proportional to the second derivative of 
the phase distribution. Therefore, to best estimate the derivative, the degree of SGDF should 
be pixel-dependent, rather than fixed for the whole field. The filtering residual mSSR  cannot 
be used as criterion to choose the polynomial order because the polynomial of degree 1+k   
will always fit at least as well as than the polynomial of degree k , and it approaching a 
perfect fit for a polynomial order which is one less than the number of data points. So we 
need to introduce the concept of degrees of freedom (DOF). The DOF associated with each 
SSR is determined by the data size 2 1= +N n  and the number of parameters m  in the 
model; i.e., the DOF of mSSR  is ( )1− −N m . In statistics, the analysis of variance (ANOVA) 
method states that the optimal degree of polynomial should be chosen for which the variance, 
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as computed by ( )1− −mSSR N m , no significant decrease as the degree of polynomial is 
increased. To do this, a successive ANOVA F-tests procedure can be used [29]: 

 
( ) ( )

( )
1 2

2

2 1

2

,
1

− −
=

− +
m m

m

SSR SSR m m
F

SSR N m
 (18) 

where the polynomial degree 2m > 1m . The resulting F  value is tested against critical values 
of ( )2 1 2, 1− − +F m m N m , available in standard statistical tables, at a preset probability level, 
usually either 5% or 1%. If ( )2 1 2, 1≥ − − +F F m m N m , it means order 2m  gives a 
statistically significantly better fit to the data than order 1m , otherwise we prefer the order 

1m . Since the SGDF yields equivalent results for the order 1/2, 3/4, 5/6, …. We can choose a 
starting polynomial degree at 1, and then the polynomial degree increases by 2 in each step of 
test. The test is terminated until the significance test fails or the highest degree 2 1n −  
reached. To reduce the computation-load, the SSR can be calculated using Gram polynomials 
based on previous values as [29] 

 ( ) ( ) 2

1 [ ] , 1.−
=− =−

 = − >  
n n

n n
m m m m

i n i n

SSR SSR P i I i P i m  (19) 

The 1st order smoothing for 1SSR  can be performed as a convolution using Savitzky-Golay 
smoothing filter. All entries of filter coefficients and the value of Gram polynomials can be 
calculated and stored as look-up-tables beforehand. 

3.2 Phase retrieval by optimal frequency selection 

The adaptive-degree SGDF can give more accurate derivative estimates by finding a 
polynomial that fits the data of each pixel best. However, it does not guarantee a more 
accurate retrieved phase by applying TIE to this derivative estimate. In fact, the adaptive-
degree SGDF usually gives an unsatisfactory phase result with severe patch effects - the result 
resembles a composite image that puts different pieces of estimated phases using different 
orders together (see Sections 4 and 5 for details), which is obviously not what we want. 
Because previously we concentrated our attention on the derivative estimation only, without 
considering the phase retrieval process using TIE. In this subsection, we present an alternative 
method which solves the optimal phase retrieval problem in spatial frequency domain. 

Considering a thin object located at plane z = 0, illuminated with a monochromatic plane 
wave, the complex wave field in the focused plane can be written as (with no loss of 
generality, a single transverse dimension is used for notational simplicity) 

 ( ) ( ) ( ) ( ) ( ),0 ,0 exp exp ,φ φ μ= = −      U x U x i x i x x  (20) 

where ( ) ( ) 2
0.5ln ,0μ = −x U x . By applying the weak phase object approximation, the 

intensity image captured at z can be represented by [14, 28, 30] 

 ( ) ( ) ( ) ( ) ( ) ( )2 2 2, , 1 2 cos 2 sin .μ πλ φ πλ= = − ∗ − ∗I x z U x z x zu x zuF F  (21) 

The intensity derivative estimated by a fixed-degree SGDF with 2 1n + intensity 
measurements is 

 
( ) ( ) ( ) ( ) ( ) ( ){ }2 22 cos 2 sin

,
.

μ πλ φ πλ
=− =−

=−

− ∗ Δ + ∗ Δ∂ Δ
≈ =

∂ Δ Δ

 


n n

i in
i i n i n

i n

a a x i z u x i z u
I x a I x i z

z z z

F F
(22) 

As we mentioned in Sec. 2.3, the coefficients of SGDF { }| − ≤ ≤ia n i n  are odd-symmetric 
with the central weight always null. Using these properties, the Fourier representation of Eq. 
(22) can be reduced to 
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( ) ( ) ( ) ( ) ( ) 2
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sin ,ω

ω πλ

φ φ
πλ

=Δ=−

∂  ≈ − Δ = ∂ Δ Δ
n

j
i SG

z u
i n

I x x x
a i z u H e

z z j z

F F
F (23) 

where ( )ωj
SGH e  is frequency response of the SGDF. Note the frequency response is simply 

the Fourier transform of the system's impulse response, and here we use the odd-symmetry 
property again. If we assume that the SGDF forms an ideal 1st derivative, i.e. 

( ) 2

2ω

ω πλ
πλ

=Δ
= Δj

SG
z u

H e j z u , this gives 

 
( ) ( )22 ,πλ φ

∂
=

∂
I x

u x
z

F F  (24) 

This equation coincides with the Fourier representation of TIE equation for the case of 
uniform unit intensity [17, 27, 28]. However, an ideal 1st derivative can never be achieved 
due to the discrete nature of SGDF. Therefore, the actual phase we obtain using SGDF is 

 ( ) ( )
( )

( ) ( ){ }2

2

1 1
2

ˆ ,

ω

ωω πλ

ω πλ
φ φ φ

πλ
− −=Δ

=Δ

 
 = = ∗ Δ  

j
SG jz u

LP
z u

H e
x x x H e

j z u
F F F (25) 

which is a low-pass filtered version of the ideal phase ( )xφ . Interestingly, the frequency 
response of the low-pass filter ( )ωj

LPH e  is exactly the same as Eq. (16). Equation (25) 
suggests that the frequency characteristic of the retrieved phase ( )φ̂ x  using SGDF is 
determined by the frequency response of the low-pass filter that is implicit in the SGDF. 
Now, reconsidering Fig. 1(b), which indicates the effect of low-pass filter decreases with 
increasing degree of SGDF, one may think that a higher-degree SGDF gives a more intact 
phase (with wider range of spatial frequencies can be accurately recovered) than a lower 
degree one. However, the higher degree SGDF results in larger NRR than the one assumes a 
smaller order. In another word, smaller order filters always give estimates of the low-
frequency phase with higher SNR, but they suffer from the problem of not having enough 
response for high frequency phase variations. The above discussion reaffirmed that using a 
single degree of SGDF cannot offer the optimal solution and a tradeoff between phase 
information at high and low spatial frequencies is necessary. 

Table 1. Normalized 0.3dB Cutoff Frequencies as a Function of m and n (n = 1~10) 

 Filter Degree m  
n 1/2 3/4 5/6 7/8 9/10 11/12 13/14 15/16 17/18 19/20 
1 0.144 -   
2 0.078 0.330 - - - - - - - - 
3 0.055 0.209 0.439 - - - - - - - 
4 0.042 0.156 0.302 0.510 - - - - - - 
5 0.034 0.126 0.236 0.370 0.560 - - - - - 
6 0.029 0.105 0.196 0.298 0.422 0.597 - - - - 
7 0.025 0.091 0.167 0.252 0.348 0.462 0.627 - - - 
8 0.022 0.080 0.146 0.219 0.298 0.388 0.496 0.651 - - 
9 0.020 0.071 0.130 0.194 0.262 0.337 0.422 0.524 0.671 - 
10 0.018 0.064 0.117 0.174 0.235 0.299 0.370 0.451 0.548 0.688 

Rather than choosing the optimal filter degree on a pixel-by-pixel basis, here we solve the 
optimal phase retrieval problem in the spatial frequency domain. The basic idea is to extract 
the best frequency components of the phase images obtained from SGDFs with various 
degrees and then recombine them into a composite phase. Considering the phase information 
lies within a certain bandwidth of spatial frequencies, such that it can be correctly 
reconstructed by both a smaller degree SGDF and a higher degree one. The smaller degree 
filter is preferred for its low NRR, or in another word, higher SNR. The frequency 
components of higher degree SGDF is only used when the smaller degree filter fails to 
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retrieve the phase information reliably. Thus, a rigorous definition of ‘correct reconstruction’ 
or ‘reliable retrieval’ is necessary. 

 

Fig. 2. Normalized 0.3 dB cutoff frequencies =ω πc cf  for different data half-length n and 
polynomial degree m. 

Most frequently, a 3dB-point is chosen as a boundary in a filter's frequency response at 
which the signal through the system begins to be attenuated rather than passing through. In 
our case, we prefer a stricter boundary point at 0.3dB - amplitude of the filter falls to the 
96.6% of the pass band. This means all spatial frequencies of the phase below 0.3dB cutoff 
frequency of the SGDF with one specific degree can be considered as reliable retrieval. The 
0.3dB-points for filters with different n  for odd polynomial orders m  are displayed in Fig. 2 
(remember the SGDF yields equivalent results for the order 1/2, 3/4, 5/6,…). The points 
marked with * and connected by a blue line are the measured cutoff frequencies for a fixed 
value of half data length n . The values for short length filters are given more precisely in 
Table 1. For large n , it is impractical to list all the 0.3dB values due to the limited space here. 
Fortunately, we found in all cases in Fig. 2, cf  varies almost linearly with m  when 2<<m n  
with the slope being dependent inversely on n , but the curves for 25n <  tend to deviate 
from a straight line as m  increases. However, when m  is large, e.g. 50 and 100, the linear 
region of the curve coincides with the range of usable values of m , so a nearly linear relation 
holds over a wide range of m . A reasonably accurate approximation to this behavior for the 
indicated range of parameters is 

 
0.3

, 25.
3.5 1

−= ≥
−c

m
f n

n
 (26) 

The values of cf  predicted by this equation are marked with a circle and connected by a red 
dash line. It shows that this simple formula fits the true values quite well even for the case 

25=n  where the measurements deviate only slightly from the straight line over the entire 
range of m . The formula does not fit as well for values of m  less than 25. However, the 
dependence of cf  on m  is still linear except for small n . For 10 25< <n  and m  suitably 
restricted, a formula similar to Eq. (26) with 1 in the denominator replaced by 2.5 gives more 
accurate predictions. While a more complicated functional form based on more measurements 
could provide more accurate predictions over a wider range of m and n, Eq. (26) should be 
adequate for most applications. 

To decompose and reconstruct the retrieved phase in frequency domain according to the 
cutoff frequency obtained, a complementary filter bank can be designed with the frequency 
response ( )j

mH e ω , 1,3,...2 1m n= −  and their amplitudes sum to unity. To achieve a flat 
response in the pass band and a fast roll off, the ( )ωj

mH e  can be in the form of high-order 
Butterworth filters or even ideal ones. For 3,5,..., 2 3= −m n  the filters ( )ωj

kH e  are band-
pass and have the pass band from m

cf  to 1−m
cf , where m

cf  represents the 0.3dB cutoff of mth 
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degree SGDF. For 1m =  the filter is a low-pass with the cutoff frequency 1
cf  and for 

2 1= −m n  the filter is a high-pass with the cutoff frequency 2 1−n
cf . The cutoff frequency of 

SGDF can be obtained by referring to Table 1, or using Eq. (26) for larger n . The phase 
retrieved by the mth order SGDF ( )φ̂m x  is then filtered by ( )ωj

mH e  

 ( ) ( ) ( ) ( ) ( ) 2

2

1 1

2
ˆ ,

j

mj z u

m m m z u
m

H eI x
x x H e

z z u

ω

ω ω πλ

ω πλ
φ φ

πλ
− − =Δ

=Δ

∂
′ = ∗ =

∂ Δ

            
F F F (27) 

and the final reconstructed phase ( )φ′ x  is their summation 

 ( ) ( ) ( ) ( )1 3 2 1... ,φ φ φ φ −′ ′ ′ ′= + + + nx x x x  (28) 

where the ( )[ ]∂ ∂ mI x z is the intensity derivative estimate using mth degree SGDF. The filter 
can either be applied to the phase obtained by TIE or together with the inverse Laplacian 
when solving the TIE in Fourier domain. A flowchart schematic of the whole procedure, 
which we call as optimal frequency selection (OFS) is shown in Fig. 3. Note usually the final 
reconstructed phase is not necessarily a composite of all possible orders because of the 
sampling effect and the limited physically significant frequency of the object. Therefore, we 
recommend the summation of Eq. (28) begins from ( )1φ′ x , ( )3φ′ x ,… and stops when the 
mean absolute of ( )φ′m x is below a given value, or the cutoff frequency with respect to u  (i.e. 

λΔm
cf z ) exceeds the maximal range of the frequency coordinate in the Fourier domain 

corresponding to x . Finally, to reduce the computation load when n  is large; the filter order 
can be increased with a step of four rather than two without sacrificing the accuracy too 
much. 

 

Fig. 3. A flowchart schematic of the OFS algorithm. 

4. Simulations 

To test the performance of the algorithm, we simulated the propagation of a complex field of 
a pure phase profile of the letters ‘TIE’ (shown in Fig. 4(a)) which was defined on a grid with 
256×256 pixels with a pixel size of 2μm×2μm. The wavelength is 632.8nm. Fifty one 
intensity images separated by 10μm were generated with defocused range between and 
−250μm ~250μm. To simulate noise effect, each defocused image was corrupted by Gaussian 
noise with standard deviation of 0.002. The Poisson noise case has been also tested on the 
same data. The results did not differ significantly from the case of Gaussian and hence not 
discussed further in this work. 
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Fig. 4. Phase recovery comparison of the synthetic noisy test data; (a) true phase, (b) 
traditional TIE using two planes separated by 20μm (RMSE = 0.2552); (c) 1st fixed degree 
SGDF (RMSE = 0.0128); (d) 31st fixed degree SGDF (RMSE = 0.0651); (e) 7th fixed degree 
SGDF (RMSE = 0.0092); (f) traditional TIE using two planes separated by 100μm (RMSE = 
0.0115); (g) adaptive-degree SGDF (RMSE = 0.0453); (h) OFS (RMSE = 0.0020); the square 
areas with red dot lines are magnified for clarity. 

 

Fig. 5. Phase error images for (a) 7th fixed degree SGDF, (b) traditional TIE using two planes 
separated by 100μm, (c) OFS. 

The phase retrieval results of different methods are shown in Fig. 4. The metric used to 
measure the accuracy of phase retrieval is given by the root mean square error (RMSE), 
which quantify the overall difference between the ideal reference phase and the retrieved 
phase. The traditional TIE method estimated the derivative using two images separated by 
10μm (Figs. 4(b)). The low-frequency artifacts superimposed on the acquired phase 
significantly obscures the object itself. The 1st-order SGDF (Soto’s noise-reduction finite 
difference method) showed a much cleaner result with far fewer low-frequency artifacts. 
However, as is clearly shown in the magnified area, the fine structural details were blurred. It 
is expected because a lower polynomial degree is more effective in removing noise, but at the 
expense of distorting small details of the signal too much. Conversely, the 31st order SGDF 
showed a cloudy image but highlights the high frequency sharp object edges. The results 
presented in Figs. 4(c) and 4(d) indicate an improper choice of polynomial degree can lead to 
reduction in phase details if the polynomial degree is too low or sub-optimal removal of low-
frequency noise if the polynomial degree chosen is unnecessarily high. To compromise 
between these opposing trends, we performed a brute-force search and found using a degree 
between 5 and 11 gave overall visually acceptable results both in resolution and contrast. The 
lowest RMSE with fixed order SGDF achieved is 0.0092, when the order was 7 (Figs. 4(e)). 
Similarly, we found that using two images separated by 100μm gave lowest RMSE (0.0115) 
for the two-plane method (Figs. 4(f)). But by inspecting their error images (shown in Figs. 
5(a) and 5(b)), we can see that they still introduced some edge blurring and/or low-frequency 
artifacts. The adaptive-degree SGDF method gave a result with clean background and fine 
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phase details (Fig. 4(g)). However, as mentioned earlier, the patch-like artifacts deteriorated 
the result significantly, resulted in a high RMSE. However, the proposed OFS method 
provided a faithful result with uniform background and sharpest edges (Figs. 4(h)). The 
residual error was rather low so that we can hardly perceived in Fig. 5(c). These results are 
verified by the RMSE of each image. 

 

Fig. 6. (Media 1) The curve of RMSE evolution, shown with corresponding magnified areas. 

To better explain the low error achieved by the OFS method, we show the RMSE curve 
versus the filter degree in Fig. 6. A video sequence (Media 1) is also presented to show the 
evolution of the phase reconstruction process. It can be seen the phase resolution gradually 
improved by adding high-frequency information corresponding to the optimal frequency 
bands in the higher order results. The reconstruction process converged when degree m  = 31, 
so the final result was a composite of phases from the 1st to 31st orders. For simplicity, an 
ideal band-pass filter bank was used to decompose and extract the optimal spatial frequency 
component of each phase recovered. The Gibbs phenomenon combined with the diffraction 
ringing effect was clearly visible during the first few steps in reconstruction as ripples 
extending beyond the object region, but it faded out rapidly as the filter degree increases. The 
final reconstructed result shows a rather clean phase with fairly high resolution, which proves 
that our method automatically sieve the best parts of result from different orders without any 
over-fitting or under-fitting problems. 

To test the noise adaptability of the proposed OFS method, we varied the standard 
deviation of the noise from 0 and 0.005, and the final RMSE curves versus standard deviation 
of the noise for different methods are shown in Fig. 7. For each noise level, the simulation 
was repeated 20 times and then the RMSE values were averaged to reduce data uncertainty. It 
can be seen when there is no noise, the higher the order of SGDF, the less the RMSE 
achieved because the derivative non-linearity is the only source of error. In the presence of 
noise, even though relatively small, the error of high-order SGDF (e.g. m = 23, 31) rise 
dramatically, indicating they are very sensitive to noise. The lower order SGDFs preform 
comparatively better, with varying degrees of noise resistibility. When the non-linearity error 
and the noise effect blend together, a compromise between the two opposing trends is more 
desirable. As the noise level further increases, the phase error is dominated by noise effect, so 
the lower degree SGDFs perform better. The 1st degree filter shows a rather good resistibility 
with an almost flat curve. 

The OFS method always performs better than other methods using a fixed order because it 
chooses the frequency-bands optimally with highest SNR in the results of different degrees. 
Besides, the curve of OFS is also rather flat despite of a slight increase with the noise 
variance, showing its great adaptability in noisy situations. From these results, we can safely 
conclude that the OFS method removes the guesswork in the choice of polynomial degree and 
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significantly outperforms the fixed-order method even with the best selection of polynomial 
degree. 

 

Fig. 7. Comparison of the RMSE for the estimated phase at different noise levels. The fixed 
degree SGDF uses m = 1, 5, 9, 15, 23, and 31 orders. 

5. Experiments 

The experimental test setup is shown in Fig. 8(a). A He-Ne laser ( λ  = 632.8nm) source is 
expanded and collimated and then illuminates the object under test. The object is reimaged 
onto a CCD via a 4f system - two lenses of focal length f = 25 mm separated by the distance 
2f, and the distance from the object to the first lens is f. The camera is set on a translation 
stage in order to modify the defocus distance. The phase object under test is a geometry 
pattern etched on PMMA substrate, which is also shown in Fig. 8(a). Fifty-one images were 
captured with an equal separation of 50μm (Media 2). Some data samples from the intensity 
stack are shown in Fig. 8(b). All these images are recorded by a monochrome CCD imaging 
device (The Imaging Source DMK 41AU02, 4.65μm pixel size) and digitally processed using 
MATLAB. 

 

Fig. 8. (a) The experimental test setup, and (b) (Media 2) intensity images from the focus 
stack. 

The phases recovered by different methods are shown in Fig. 9, which are similar with our 
simulation results. Smaller-order filters effectively suppress noise, at the expense of distorting 
smaller scale phase features. Higher-order filters preserve smaller scale features well, with the 
disadvantage of being less effective at suppressing low-frequency noise. By subjective 
evaluation of the reconstructed phase, it is noticed that the 5th degree SGDF produces best 
visual effect with regard to the contrast and resolution (Fig. 9(c)). Similarly, the optimum 
distance for traditional TIE (two-plane method) was found to be 700μm (Fig. 9(d)). However, 
either the background was too noisy or the phase resolution was sacrificed in their estimated 
phase (see Figs. 9(b)-(f)). The adaptive-degree SGDF method composited the phase in spatial 
domain, resulting in an unnatural result with contrast reversal (Figs. 9(g)). Figure 9(h) shows 
the reconstructed result by OFS, with the evolution process animated in Media 3. The final 
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phase of OFS combined the results of different degrees up to 27, indicating that not only the 
tiny details were detected but also the overall contrast of the phase was well preserved, 
despite slight non-uniform distribution in the background (which may be partially caused by 
the dust particles on the sample and/or the lens). 

 

Fig. 9. Phase recovery comparison of a test phase object; (a) traditional TIE using two images 
separated by 100μm; (b) 1st fixed degree SGDF; (c) 5th fixed degree SGDF; (d) 15th fixed 
degree SGDF; (e) 27th fixed degree SGDF; (f) traditional TIE using two images separated by 
700μm; (g) adaptive-degree SGDF; (h) OFS (Media 3); the bottom right red squares show the 
corresponding enlarged regions. 

 

Fig. 10. Comparison between the phases retrieved from digital holography and TIE; (a) 
hologram of the same test sample; (b) hologram Spectrum; (c) reconstructed phase from digital 
holography (the red dot square at bottom right shows a corresponding area of Fig. 9(h)); (d) 
cross-sections of the phase marked with the red and blue lines in (c). 

To better quantify the phase retrieved by the proposed method, we also measured the 
same sample using a digital holography (DH) microscope based on the Michelson 
interferometric configuration with a 4x objective (NA = 0.13) [31]. Figure 10 shows the 
hologram (a) and its spectrum (b). The phase demodulation was done by first filtering one of 
the first orders (the red circle area) from the hologram spectrum and then reconstructing the 
hologram in the traditional manner [31]. The phase curvature was physically compensated by 
introducing the same spherical phase curvature in the reference beam [32]. Figure 10(c) 
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shows the recovered phase. It can be seen that the reconstructed phase surface using the OFS 
method agrees well with the phase measurements made by DH. To clearly compare the phase 
profiles, a magnification of the corresponding area from Fig. 9(h) is also shown in Fig. 10(c), 
in the red dot line rectangle. Figure 10(d) shows a comparison of phase profiles taken across 
the sample edge showing the phase jump obtained with holography and with our TIE 
approach identified by blue continuous and red dashed lines, respectively. Both two methods 
were capable of following the large phase step and fine phase variations (e.g. the vertical line 
nicks results from the imperfection in fabrication) of the sample quite accurately. 

6. Conclusions and discussions 

The contribution of this paper is two-fold. First, several existing strategies for estimating the 
axial intensity derivative in TIE from multiple intensity measurements have been unified by 
the SGDF, which not only provides different views and insights on known derivative 
estimation methods but, more important, it also suggests a new way of improving solution 
strategies from an angle of digital filter design in signal processing. Second, two advanced 
applications of SGDF in TIE have been proposed. The adaptive-degree SGDF method based 
on the statistical testing allows the automatic choice of the proper degree of SGDF in 
different parts of the intensity image. The OFS method, more desirably, decomposes, 
processes, and then recombines the phases using the SGDF with various degrees in spatial 
frequency domain. The introduction of OFS provides a powerful tool which, in all of our 
numerical simulations and experiments, outperforms both optimally chosen and sub-optimally 
chosen fixed-degree methods that are commonly used. 

 

Fig. 11. Phase recovery results under significant noise (noise standard deviation 0.01); (a) 
intensity image with defocus distance 80μm, (b) 7th fixed degree SGDF (RMSE = 0.6016); (c) 
OFS (RMSE = 0.0616); (d) OFS with Tikhonov-regularization (RMSE = 0.0332). 

Although the OFS improves the noise resistibility and the phase resolution of TIE 
significantly, its performance also shares a common limitation of TIE based method - lower 
spatial frequencies are more sensitive to noise as compared with the higher spatial 
frequencies. Under severe noisy conditions, the low frequency noise is difficult to be entirely 
eliminated, because the inverse Laplacian operation is ill-conditioned at near zero-frequency. 
Figure 11 show the simulation results when the noise was increased to significant level 
(standard deviation 0.01). As shown in Fig. 11(a), the underlying intensity signal was 
submerged in the noise, so that even the 7th fixed degree SGDF can no longer render a visible 
result (Fig. 11(b)). The OFS reduced the noise significantly, but the residual low-frequency 
noise remained obvious (Fig. 11(c)). In this situation, proper regularization treatments [33, 
34] can help to reduce the low frequency artifacts at the cost of attenuation in slow variations 
of the underlying true phase signal. By combining the Tikhonov-regularization with OFS, the 
low frequency noise further reduced, accompanied by some dark ‘halos’ appeared near edges 
(Fig. 11(d)). Another possible countermeasure is to increase the defocusing range of the 
intensity stack so that the cut-off frequency of 1st degree SGDF can be narrowed to near zero-
frequency. Of course, this point is beyond the scope of the present work and needs more 
detailed investigation. 

Appendix A: Proof of Observation 3 

The optimization problem in higher order finite difference with noise-reduction method is to 
minimize NNR 2

=− n

ii n
a , under constraints that (1) 0

=−
= n

ii n
a ; (2) 1

=−
= n

ii n
a i ; (3) 
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0, 2,3,...,
=−

= = n k
ii n

a i k m . In [18], the authors solve this problem by matrix partition. Here 
we rewrite the problem as a quadratic programming problem: 
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 (30) 

Solving Eq. (29) using Legendre multiplier: 

 ,
 −    

=     −    

T

L

a 0E B

cB 0 λ
 (31) 

where Lλ is the Legendre vector and E is identity matrix. The solution for the equations is: 

 ( ) ( )( )1 1
and

− −
= =

T
T T

L BB c a BB B c.λ    (32) 

Carefully examine the matrix B , we can find it equals TA in Eq. (7). Therefore, 

 ( )( )1
=

−
=

T
T T Ta A A A c H c,   (33) 

where H  is exactly the same one as in Eq. (8), and TH c  extracts the second row from H . 
Thus, the Observation 3 is established. 
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