Super-Resolution Optical Microscopy

Bo Huang Light Microscopy May 10, 2010

The diffraction barrier

Diffraction limit: ~ 250 nm lateral ~ 600 nm axial

http://www.3dchem.com; http://cs.stedwards.edu; http://cvcweb.ices.utexas.edu; Fotin et al., Nature 2004; http://hrsbstaff.ednet.ns.ca; http://www.ebi.ac.uk

50 years to extend the resolution

- Confocal microscopy (1957)
- Near-field scanning optical microscopy (1972/1984)
- Multiphoton microscopy (1990)
- 4-Pi microscopy / I⁵M (1991-1995)
- Structured illumination microscopy (2000)
- Negative refractive index (2006)

Near-field scanning optical microscopy

 β_2 adrenergic receptor clusters on the plasma membrane

lanoul et al., 2005

4-Pi / I⁵M

Major advantage: Similar z resolution as x-y resolution

Patterned illumination

Structured Illumination Microscopy (SIM)

Gustafsson, J Microscopy 2000

The diffraction limit still exists

Breaking the diffraction barrier

ALL .S.

Breaking the diffraction barrier

Stimulated Emission Depletion (STED)

STED microscopy

Hell 1994, Hell 2000

Saturated depletion

 $d = \frac{1}{\sqrt{1 + I/I_s}} \cdot \frac{\lambda}{2NA}$

 $I_{\text{STED}} = R_{\text{SUG}} I_{\text{S}}$

STED images of microtubules

Wildanger et al., 2009

The "patterned illumination" approach

Saturated SIM

Saturated illumination pattern

50 nm resolution

Suffers from fast photobleaching under saturated excitation condition

The single-molecule switching approach

Single-Molecule Localization

Image of one fluorescent molecule

Single-molecule localization precision

Super-resolution imaging by localization

²x real time

<u>St</u>ochastic <u>Optical Reconstruction Microscopy = STORM</u>

Also named as PALM (Betzig et al., Science, 2006) and FPALM (Hess et al., Biophys. J. 2006)

Photoswitching of red cyanine dyes

Cy5 / Alexa 647

Bates eta l., PRL 2005, Bates et al., Science 2007, Dempsey et al., JACS 2009

The "single-molecule switching" approach

STORM probes commercially available or already in your lab

3D Imaging 3D Imaging

In a 2D world...

Satellite image of ???

Google maps

3D STED

Harke et al., Nano Lett, 2008

3D STORM/PALM

3D Imaging of the Microtubule Network

5 µm

Scale bar: 200 nm

Huang, Wang, Bates and Zhuang, Science, 2008

The use of two opposing objectives

Shtengel et al., PNAS 2009

3D resolution of super-resolution methods

	x-y (nm)	z (nm)	Opposing objectives (nm)	Two-photon
Conventional	250	600	4Pi: 120	
SIM	100	250	I ⁵ S: 120 xyz	
STED	~30	~100	isoSTED: 30 xyz	100 µm deep
STORM/PALM	20-30	50-60	iPALM: 20 xy, 10 z	

Multi-color Imaging

Muticolor STED

2 color isoSTED resolving the inner and outer membrane of mitochondria

Multicolor STORM/PALM: Emission

 $n_1 = n_2$

- → 50% SRA545 + 50% SRA617?
- ➔ 100% SRA577?

Single-molecule detection!

3-color imaging with one excitation wavelength and two detection channels

Bossi et al., Nano Lett 2008

Multicolor STORM/PALM: activation

Cy3 / Alexa 647: Clathrin

Cy2 / Alexa 647: Microtubule

Crosstalk subtracted

Multicolor imaging

	Multicolor capability		
Conventional SIM	4 colors in the visible range		
STED	2 colors so far		
STORM/PALM	3 activation x 3 emission		

Live Cell Imaging

SIM

Kner, Chhun et al., Nat Methods, 2009

Schroff et al., Nat Methods, 2008

STORM/PALM

STED

Nagerl et al., PNAS, 2008

The limit of "Super-Resolution"

Unbound theoretical resolution

$$d = \frac{1}{\mathbf{S}} \cdot \frac{\lambda}{2NA}$$

- STORM/PALM $S = \sqrt{N}$
 - -6,000 photons \rightarrow 5 nm
 - 100,000 photos during Cy5 life time \rightarrow < 1 nm
- STED $S = \sqrt{1 + I/I_s}$
 - 1:100 contrast of the donut \rightarrow 20 nm
 - Diamond defects: 8 nm

Effective resolution: Probe size matters

~ 6000 photons

< 1000 photons

~ 6000 photons

Effective resolution: Density matters

1000 frames, 10 sec total time

PBointooppointdistane < //Feetures iziee

Effective resolution: contrast matters

Time resolution: density matters

Typical Localization accumulation: 28 points / $\mu m^2 \cdot s$

Effective resolution: 70 nm at 25 sec integration time

Now as fast as 2 sec time resolution with 1000 frames / sec camera

25 sec time resolution, 100x real time3 mM mercaptoethylamine

— 1 μm

Comparison of time resolution

2D		Spatial resolution	Time resolution
SIM	Wide-field	120 nm	9 frames (0.09 sec)
STED	Scanning	60 nm	1 x 2 μm: 0.03 sec 10 x 20 μm: 3 sec
STORM/PALM	Wide-field	60 nm	3000 frames (3 sec)

3D		Spatial resolution	Time resolution
SIM	Wide-field	120 nm	15 frames x 10 (1.5 sec)
STED	Scanning	60 nm	1 x 2 x 0.6 μm: 0.6 sec 10 x 20 x 0.6 μm: 60 sec
STORM/PALM	Wide-field	60 nm	3000 frames (3 sec) – no scan!

With the creation of new tools...

