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Abstract

®

CrossMark

We propose an automatic high-order aberration correction method for digital holographic
microscopy based on orthonormal polynomial fitting over an irregular-shaped aperture. The
corner detection technique is used to detect the specimen-free area for orthonormal polynomials
over an irregular-shaped aperture. The high-order aberration correction method is completely
automatic and requires only a single hologram. Experiments showed that in aberration
correction, both lower-order phase curvatures and high-order aberrations could be corrected
without requiring extra devices. Numerical simulations show that the proposed method provides
more accurate high-order aberration correction than aberration correction methods based on least
squares fitting with standard polynomials. Experimental results demonstrate the feasibility of
using the proposed method for analyzing human macrophage cells.

Keywords: digital holography, aberration compensation, interference microscopy, phase

measurement

1. Introduction

Digital holographic microscopy (DHM) is an interferometric,
nondestructive, label-free technique for acquiring quantitative
phase images. Thus far, it has been used in applications such
as cell biology analysis [1], particle tracking [2], microfluidics
metrology [3], and neural science [4]. In DHM, the object
wave transmitted or reflected from a specimen is collected by
a microscope objective to enhance the spatial resolution.
However, aligning the microscope objective is often difficult
in a laboratory, and the phase aberrations introduced by this
misalignment are superposed over the phase information
induced by the specimen.

2040-8978/19,/045609+-09$33.00

Compensating for this phase aberration is critical in both
DHM and digital holographic microtomography. In recent
years, various physical and numerical methods have been
proposed to address this issue. Physical methods include
double exposure [5], position-adjustable lens [6], and the same
objective lens in a reference wave [7]. However, these methods
usually require precise alignment. To overcome this challenge,
many numerical compensation methods have been proposed.
Principal component analysis and optimal principal component
analysis have been used to extract the spherical phase curvature
for digital holography; however, they are not applicable to
high-order aberrations [8, 9]. Spectral analysis methods have
been used to acquire the degrees of phase aberrations;

© 2019 IOP Publishing Ltd  Printed in the UK


https://orcid.org/0000-0002-2146-5021
https://orcid.org/0000-0002-2146-5021
mailto:zhaojunliu@sdu.edu.cn
https://doi.org/10.1088/2040-8986/ab0e63
https://crossmark.crossref.org/dialog/?doi=10.1088/2040-8986/ab0e63&domain=pdf&date_stamp=2019-03-22
https://crossmark.crossref.org/dialog/?doi=10.1088/2040-8986/ab0e63&domain=pdf&date_stamp=2019-03-22

J. Opt. 21 (2019) 045609

Z Yang et al

however, the sampling interval in the Fourier domain limits the
aberrations correction accuracy [10, 11]. In least squares fitting
methods, phase aberrations are fitted using standard poly-
nomials [12], spherical surface [13], parabolic function [14], or
Zernike polynomials [15]; however, a specimen-free area must
be selected for fitting. Recently, deep learning techniques with
convolutional neural networks have been used for selecting a
specimen-free area for Zernike polynomial fitting [16]. A
nonlinear optimization procedure has also been used for phase
aberration extraction [17]. However, for the specimen-free
area, orthonormal polynomials are neither orthogonal nor
represent classical aberrations. To the best of our knowledge,
almost all aberration corrections for DHM based on least
squares fitting methods cannot remove the fitting error intro-
duced by the loss of orthogonality of standard orthonormal
polynomials, especially for high-order aberration correction for
DHM and digital holographic microtomography.

This paper presents a high-order aberration correction
method based on orthonormal polynomials fitted over an
irregular-shaped aperture for a transmission DHM system
with the Michelson interferometric configuration. The corner
detection technique is used to detect the specimen-free area
for orthonormal polynomials over an irregular-shaped aper-
ture. The high-order aberration correction method is com-
pletely automatic and requires only a single hologram.
Simulation results for human macrophage cells demonstrate
the validity of this method.

2. Principle

The specimen-free area in holograms usually has an irregular-
shaped aperture, and the fitting error introduced by the loss of
orthogonality of standard orthonormal polynomials can be
superposed over the specimen. Based on Zernike polynomials
over a unit circular aperture, polynomials that are orthogonal
over noncircular apertures such as annular [18], hexagonal
[19], elliptical [20], rectangular [21], square [22], and olivary
[23] apertures are obtained through orthogonalization.
Recently, we have developed expressions for orthogonal
polynomials over irregular-shaped apertures that are used for
absolute measurements of optical surface figures [24, 25]. The
orthogonalization process is described briefly here.

Zernike polynomials Z" (p, 6) are widely used in optical
testing and wavefront analysis for their orthogonality over a
unit circular aperture, which can represent classical aberra-
tions in an optical system. They can be written as [26]

1
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where (p, 0) is the polar coordinate over the unit circular
aperture, n and m are positive integers including 0 and

n—m>0, and §; is the Kronecker delta. The Zernike
polynomials are orthogonal over a unit circular aperture as
given by
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In a DHM system, the phase aberrations W (p, 6) con-
taining discrete data points over a unit circular aperture can be
expanded in terms of Zernike polynomials Z;(p, 6):

N
W(p, 0) =3 ciZi(p, 0), (3)
i=1

where Z; is the Zernike polynomial of the ith term and N is the
total number of terms in the Zernike polynomial. The Zernike
expansion coefficients ¢; are given by

1 1 27
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However, the specimen-free area in holograms usually
has an irregular-shaped aperture, Zernike polynomials are
neither orthogonal nor represent classical aberrations. If
we use the terms of Zernike polynomials representing the
phase aberrations W (p, f) based on equation (4), the
accuracy and stability of the calculation procedure of ¢;
greatly degrade and the data sets with an irregular-shaped
aperture seriously deviate from a unit circular aperture.
To obtain orthogonal polynomials over general aperture
shapes, studies have used Gram—Schmidt orthogonalization
[18-25]. In Gram—Schmidt orthogonalization, the Zernike
polynomials Z;(p’, 6') can be expanded by the orthogonal
polynomials F(p’, §/) over general aperture shapes. The
Zernike polynomials Z;(p’, #’) and conversion coefficient o
are given by equation (5)

Zi(p', 0) = aFi(p, 0)
k=1

J DAZi(p's VF(p', O k<i . (5)
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where (p/, 0) is the polar coordinate over the irregular-
shaped aperture and the orthogonal polynomials over
general aperture shapes F(p’, 6') can be expressed as

1 i-1
E(p', ') = —[Zi(p’, 0" — > agFe(p', 9’)]. (6)
ii k=1

u
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Figure 1. Block diagram of phase reconstruction of traditional DHM and proposed automatic high-order aberration correction algorithm.

Therefore, phase aberrations W (p’, ') that measure
discrete data points over general aperture shapes can be
expanded in terms of F(p’, 0") and the coefficients a; can be
expressed as
( N N
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Utilizing the orthogonality property of orthogonal poly-
nomials F.(p’, 6'), orthogonal polynomials expansion
coefficients a; can be expressed as
a= [ WL O, Opdae, )
(p'.0HeD
where D is the specimen-free area in holograms. The Zer-
nike expansion coefficients ¢; can be expressed as

la. ©))

c =

Based on the Zernike expansion coefficients ¢;, the
phase aberrations W (p, 0) over a unit circular aperture in
DHM can be calculated by equation (4).

Figure 1 shows a block diagram of the phase recon-
struction of traditional DHM and the steps in our automatic
high-order aberration correction method for DHM based on
orthonormal polynomials fitted over an irregular-shaped
aperture. Just like phase aberration correction methods based
on least squares fitting, the phase aberrations are fitted by
standard polynomials and we need to select a specimen-free
area for fitting. A machine learning corner detection approach

has been proposed to automatically determine the specimen-
free area based on an unwrapped phase [27]. Then, we can
obtain the available phase background region that allows for
orthonormal polynomial fitting. After expanding the back-
ground region of a specimen-free area to a unit circular
aperture, the orthonormal polynomials are calculated through
orthogonalization. The coefficients of orthogonal polynomials
over general aperture shapes g, are given by equation (9).
Based on the conversion matrix of Zernike polynomial
coefficients and orthogonal polynomial coefficients, Zernike
expansion coefficients over a unit circular aperture can be
calculated. Just like the Zernike polynomials used in wave-
front analysis, quantitative analysis of high-order aberrations
is performed using specimen-free phase data. Finally, high-
order phase aberrations in DHM are compensated.

3. Simulation

To validate the feasibility of the proposed high-order aber-
ration correction method, we used previously reported spe-
cimen phase data [8] in our numerical simulation. Figure 2(a)
shows the specimen phase data after removing the phase map
in the specimen-free area over a unit circular aperture, and
figure 2(b) shows the mask of the specimen-free area. The
phase aberrations in DHM are generated from the sum of 81-
term Zernike polynomials, as shown in figure 3(a). The
Zernike polynomials are usually used to represent classical
aberrations in the optical system. Figure 3(b) shows the
coefficients of the Zernike polynomials of the phase
aberrations.

Figure 4(a) shows a simulated phase image of the spe-
cimen with the phase aberration in the numerical simulation,
which is the sum of the specimen phase data and the phase
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Figure 2. Specimen phase data over a unit circular aperture in numerical simulation. (a) Specimen phase data after removing the phase map in

the specimen-free area and (b) the mask of the specimen-free area.
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Figure 3. Phase aberrations in the numerical simulation. (a) Phase aberrations are generated by the sum of 81-term Zernike polynomials, and

(b) coefficients of Zernike polynomials of phase aberrations.
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Figure 4. Phase image of specimen with phase aberration in the numerical simulation. (a) Phase image of specimen with the phase aberration

and (b) specimen-free area selected for fitting.

aberrations over a unit circular aperture. Figure 4(b) shows
the selected specimen-free area for orthonormal polynomial
fitting. Figure 5 shows the compensation result obtained with
the Zernike polynomial fitting method in the numerical
simulation and the corrected phase aberrations. Figure 6
shows a comparison of the Zernike polynomial coefficients of

the simulated and the corrected phase aberrations. This figure
indicates that low-order phase aberrations have been corrected
partially, whereas high-order phase aberrations cannot be
corrected by traditional Zernike polynomial fitting.

Based on the phase aberration correction procedure, the
orthonormal polynomial coefficients of simulated phase
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Figure 5. Compensation result obtained with Zernike surface fitting method in the numerical simulation. (a) Compensation result and

(b) corrected phase aberrations.
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Figure 6. Comparison of Zernike polynomial coefficients of
simulated and corrected phase aberrations obtained by the Zernike
polynomial fitting method.
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Figure 7. Orthonormal polynomial coefficients of simulated phase
aberrations obtained by the proposed orthonormal polynomial fitting
method.

aberrations obtained by the proposed orthonormal polynomials
fitting method are shown in figure 7, and the conversion
coefficient matrix for Gram—Schmidt orthogonalization is
shown in figure 8. Figure 9 shows the compensation result
obtained using the orthonormal polynomial fitting method in
the numerical simulation and the corrected phase aberrations.
Figure 10(a) shows a comparison of the Zernike polynomial
coefficients of the simulated and the corrected phase
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Figure 8. Conversion coefficient matrix for Gram—Schmidt
orthogonalization.

aberrations, figure 10(b) shows the deviation distribution of
the results from the initial assumed phase aberrations, with
the PV =3.13 x 10 '* X\ and rms = 2.37 x 10" \. This
figure indicates that low- and high-order phase aberrations have
been corrected by our proposed orthonormal polynomial fitting
over an irregular-shaped aperture.

4. Experiments

To verify the automatic high-order aberration correction
method based on orthonormal polynomial fitting over an irre-
gular-shaped aperture, experimental results for human macro-
phage cells are shown in figure 11(a), and a reconstructed
phase map of a hologram without phase aberration compen-
sation over a unit circular aperture is shown in figure 11(b).
The phase map in figure 11(b) shows significant defocusing
and spherical aberration. Based on the phase reconstruction
of DHM and the proposed automatic high-order aberration
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Figure 9. Compensation result obtained using the orthonormal polynomial fitting method over an irregular-shaped aperture in the numerical
simulation. (a) Compensation result and (b) corrected phase aberrations.
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Figure 10. The simulation results. (a) Comparison of Zernike polynomial coefficients of simulated and corrected phase aberrations obtained
by the orthonormal polynomial fitting method and (b) the deviation distribution of the results from the initial assumed phase aberrations.
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Figure 11. Experimental results on human macrophage cells without aberration correction. (a) Digital hologram and (b) reconstructed phase
map without phase aberration compensation over a unit circular aperture.

correction methods, as shown in figure 1, the mask of the
specimen-free area is shown in figure 12(a) and the recon-
structed phase map over the specimen-free area is shown in
figure 12(b). Figure 13(a) shows the corrected results obtained
using the Zernike polynomial fitting method, and figure 13(b)
shows the compensated phase aberrations. Figure 14(a) shows

the corrected results obtained using the orthonormal poly-
nomial fitting method over an irregular-shaped aperture, and
figure 14(b) shows the compensated phase aberrations. The
results and improvements from figures 13(a) and 14(a) seem
mostly minor and achievable with a changed contrast rather
than with aberrations correction, but the phase aberration has
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Figure 12. Reconstructed phase map over the specimen-free area without phase aberration compensation. (a) Mask of the specimen-free area

and (b) reconstructed phase map over the specimen-free area.
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Figure 13. Corrected results obtained using the Zernike polynomial fitting method. (a) Corrected results and (b) compensated phase

aberrations.
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Figure 14. Corrected results obtained using the orthonormal polynomial fitting method over an irregular-shaped aperture. (a) Corrected

results and (b) compensated phase aberrations.

been corrected. Figure 15 shows a comparison of the results
obtained using the Zernike polynomial fitting method and the
orthonormal polynomial fitting method over an irregular-
shaped aperture. The corrected results obtained using the latter

method indicate that high-order phase aberrations have been
corrected, and they have the same order of magnitude as lower-
order phase aberrations. In our automatic high-order aberration
correction for DHM, the calculation time is 1.1 min, which
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Figure 15. Comparison of the results obtained using the Zernike
polynomial fitting method and orthonormal polynomial fitting
method over an irregular-shaped aperture.

depends on the Gram—Schmidt orthogonalization procedure
over irregular-shaped aperture and the size of the digital
hologram. In the experiment, all calculations are performed on
a laptop with a 24GHz i7 CPU and 8G RAM using
MATLAB®.

5. Conclusion

We have presented a high-order aberration correction method
for DHM based on orthonormal polynomial fitting over an
irregular-shaped aperture. The corner detection technique is
used to detect the specimen-free area for the orthonormal
polynomials over an irregular-shaped aperture. Compared with
the traditional phase aberration correction method, our pro-
posed aberration correction method can correct low- and high-
order phase aberrations. Our aberration correction method is
completely automatic and requires only a single hologram.
These characteristics make it a very effective tool for DHM.
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