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A. The description for the robust iteration method

The transport-of-intensity equation is

− k
∂I (r)

∂z
= ∇ · [I (r)∇φ (r)] , (S1)

where I (r) is the in-focus image intensity, r is the position vector representing the 2D spatial coordinates (x, y), φ (r) is the phase
information, k is the wave number 2π/λ, λ is the incident wave-length. Thus, the equation can be considered as

∇ · [I (r)∇φ (r)] = −kJ0 (S2)

with some Neumann boundary condition ∇φ · γ = β on a square Ω. Here β is a known function defined on ∂Ω, γ is the outer unit
normal vector, −kJ0 = −k∂I (r) /∂z is a constant.

The method can be noted as the following:
Step1: Let ϕ0 satisfies the equation:

∇ · (Imax∇ϕ0) = −kJ0 (S3)

with the Neumann boundary condition ∇φ0 · γ = β . Here Imax means the maximum value of I on Ω. Then φ0 can be calculated.
Step2: Suppose that ϕn has been solved, the let ϕn+1 satisfies the equation

∇ · (Imax∇ϕn+1) = ∇ · ((Imax − I)∇ϕn) (S4)

with homogeneous Neumann boundary condition, i.e. ∇ϕn+1 · γ = 0. Then calculate φn+1 by the same numerical algorithm. Then we
can calculate a sequence {ϕn}∞

n=0. Here Eq. S4 is equivalent to Step Calculate intensity derivative discrepancy in the original paper
(∆Jn = ∆Jn−1 − Jn).

Step3: When φ =
∞
∑

n=0
ϕn, we hope φ is the solution of Eq. S2, and thus two conditions must be satisfied.

1) The series {ϕn}∞
n=0 is convergent.

2) The φ can satisfies Eq. S2.
Section B to Section F are derived under the following assumptions:
1) The function I (r) belongs to the Lipschitz spaces.
2) For any r ∈ Ω, I (r) > 0.
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B. W1,2 estimations for ϕn

W1,2 represents one sobolev space[1], and in this space, the square of the first derivative of all functions is integrable. When n > 1,
Eq. S4 can be noted as ∫∫

Ω
∇2 ϕn+1 ϕn+1dxdy =

∫∫
Ω
∇
(

Imax − I
Imax

∇ϕn

)
ϕn+1dxdy. (S5)

Then according to the Hölder inequality, Eq. S5 can be rewritten as

∫∫
Ω
|∇ϕn+1|2dxdy =

∫∫
Ω

(
Imax − I

Imax
∇ϕn

)
∇ϕn+1dxdy 6

(∫∫
Ω

∣∣∣∣ Imax − I
Imax

∇ϕn

∣∣∣∣2dxdy

)1/2(∫∫
Ω
|∇ϕn+1|2dxdy

)1/2
, (S6)

which means that(∫∫
Ω
|∇ϕn+1|2dxdy

)1/2
6

(∫∫
Ω

∣∣∣∣ Imax − I
Imax

∇ϕn

∣∣∣∣2dxdy

)1/2

6

∥∥∥∥ Imax − I
Imax

∥∥∥∥
L∞(Ω)

(∫∫
Ω
|∇ϕn|2dxdy

)1/2
. (S7)

Then by the induction, we know that

‖ϕn+1‖W1,2(Ω) 6

(∥∥∥∥ Imax − I
Imax

∥∥∥∥
L∞(Ω)

)n

‖ϕ1‖W1,2(Ω). (S8)

Thus, φ =
∞
∑

n=0
ϕn belongs to W1,2 (Ω), provided that ϕ0 and ϕ1 also belong to W1,2 (Ω). According to the Sobolev embedding

theorem [2, 3], when Wp,q (Ω) needs to be embedded in L∞ (Ω), the product of p and q needs to be larger than the space dimension
(here the dimension is 2). Thus, W1,2 cannot be embedded in L∞ (Ω).

C. W2,2 estimations for ϕn

From Eq. S4, we also have the following equation for h > 0 small enough∫∫
Ω
∇ϕn+1D−h

x ∇Dh
x ϕn+1dxdy =

∫∫
Ω

Imax − I
Imax

∇ϕnD−h
x ∇Dh

x ϕn+1dxdy. (S9)

Here Dh
x ϕn+1 (x, y) = [ϕn+1 (x + h, y)− ϕn+1 (x, y)] /h. We extend ϕn+1 to a bigger domain Ω′ = Ω ∪ [−h0, 0]× [0, 1] ∪ [1, 1 + h0]×

[0, 1] ∪ [0, 1]× [−h0, 0] ∪ [0, 1]× [1, 1 + h0] where h0 > 0 is small enough. For the left hand side, we have that∫∫
Ω
∇ϕn+1D−h

x ∇Dh
x ϕn+1dxdy = −

∫∫
Ω

Dh
x∇ϕn+1∇Dh

x ϕn+1dxdy + J1 + J2, (S10)

where
J1 = − 1

h

∫∫
[−h0,0]×[0,1]

∇ϕn+1 (x + h, y)∇Dh
x ϕn+1 (x, y) dxdy,

and
J2 =

1
h

∫∫
[1−h0,0]×[0,1]

∇ϕn+1 (x + h, y)∇Dh
x ϕn+1 (x, y) dxdy.

By the similar arguments, for the right hand side, we also have that∫∫
Ω

Imax − I
Imax

∇ϕnD−h
n ∇Dh

n ϕn+1dxdy = −
∫∫

Ω
Dh

n

(
Imax − I

Imax
∇ϕn

)
∇Dh

n ϕn+1dxdy + J3 + J4, (S11)

where

J3 = − 1
h

∫∫
[−h0,0]×[0,1]

Imax − I (x + h, y)
Imax

∇ϕn+1 (x + h, y)∇Dh
x ϕn+1 (x, y) dxdy,

and

J4 =
1
h

∫∫
[1−h0,0]×[0,1]

Imax − I (x + h, y)
Imax

∇ϕn+1 (x + h, y)∇Dh
x ϕn+1 (x, y) dxdy.

Let h tends to 0+. Then Ji tends to 0 for each i = 1, 2, 3, 4. Thus based on Hölder inequality,∫∫
Ω
|Dx∇ϕn+1|2dxdy =

∫∫
Ω

Dx

(
Imax − I

Imax
∇ϕn

)
Dx∇ϕn+1dxdy

6

(∫∫
Ω

∣∣∣∣Dx

(
Imax − I

Imax
∇ϕn

)∣∣∣∣2dxdy

)1/2(∫∫
Ω
|Dx∇ϕn+1|

2
dxdy

)1/2
.

(S12)
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This means that for any ε > 0,∫∫
Ω
|Dx∇ϕn+1|2dxdy 6

∫∫
Ω

∣∣∣∣ Imax − I
Imax

Dx∇ϕn −
∇I
Imax

ϕn

∣∣∣∣2dxdy

6 (1 + ε)
∫∫

Ω

∣∣∣∣ Imax − I
Imax

Dx∇ϕn

∣∣∣∣2dxdy +
∫∫

Ω

(
1 +

1
ε

) ∣∣∣∣ ∇I
Imax

ϕn

∣∣∣∣2dxdy

6 (1 + ε)

∥∥∥∥ Imax − I
Imax

∥∥∥∥2

L∞(Ω)

∫∫
Ω
|Dx∇ϕn|2dxdy +

(
1 +

1
ε

) [
Lip (ϕ)

Imax

]2 ∫∫
Ω
|∇ϕn|2dxdy.

(S13)

Lip (ϕ) represents the maximum of∇I in the Lipschitz spaces. Then from the induction and the conclusion in Section B, we can obtain

∫∫
Ω
|Dx∇ϕn+1|2dxdy 6

[
(1 + ε)

∥∥∥∥ Imax − I
Imax

∥∥∥∥2

L∞(Ω)

]n ∫∫
Ω
|Dx∇ϕ1|2dxdy

+

(
1 +

1
ε

) [
Lip (ϕ)

Imax

]2
n(1 + ε)n−1

∥∥∥∥ Imax − I
Imax

∥∥∥∥2n−2

L∞(Ω)

∫∫
Ω
|∇ϕ1|2dxdy.

(S14)

Here we also used the assumption that I (x, y) belongs to the Lipschitz spaces. By the same arguments, we also obtain that∫∫
Ω

∣∣Dy∇ϕn+1
∣∣2dxdy 6

[
(1 + ε)

∥∥∥∥ Imax − I
Imax

∥∥∥∥2

L∞(Ω)

]n ∫∫
Ω

∣∣Dy∇ϕ1
∣∣2dxdy

+

(
1 +

1
ε

) [
Lip (ϕ)

Imax

]2
n(1 + ε)n−1

∥∥∥∥ Imax − I
Imax

∥∥∥∥2n−2

L∞(Ω)

∫∫
Ω
|∇ϕ1|2dxdy.

(S15)

Thus,

‖ϕn‖W2,2(Ω) 6

√
1 +

1
ε

Lip (ϕ)

Imax

[√
(1 + ε)

∥∥∥∥ Imax − I
Imax

∥∥∥∥
L∞(Ω)

]n−2

n‖ϕ1‖W2,2(Ω). (S16)

D. W2,2 estimates for ϕ0 and ϕ1

The global W2,2 estimates for ϕ0 and ϕ1 are standard. We can get that

‖ϕ0‖W2,2(Ω), ‖ϕ1‖W2,2(Ω) 6 C′, (S17)

where C′ is a positive constant depending on I, β and −kJ0. We omit the proof.

E. The convergence

Note that

‖φ‖W2,2(Ω) 6

∥∥∥∥∥ ∞

∑
k=0

ϕn

∥∥∥∥∥
W2,2(Ω)

6
∞

∑
k=0
‖ϕn‖W2,2(Ω) 6 ‖ϕ0‖W2,2(Ω) + ‖ϕ1‖W2,2(Ω) +

∞

∑
n=2
‖ϕn‖W2,2(Ω)

6 ‖ϕ0‖W2,2(Ω) + ‖ϕ1‖W2,2(Ω) + ‖ϕ1‖W2,2(Ω)

√
1 +

1
ε

Lip (ϕ)

Imax

∞

∑
n=2

n

(
√

1 + ε

∥∥∥∥ Imax − I
Imax

∥∥∥∥
W2,2(Ω)

)n−2

.

(S18)

By choosing ε small enough such that
√

1 + ε‖(Imax − I) /Imax‖W2,2(Ω) < 1, the above series is convergent. This means that φ belongs
to W2,2 (Ω). From the Sobolev’s Embedding Theorem[2, 3], φ also belongs to L∞ (Ω) space, which means that φ is bounded.

Now we only need to show that φ is the solution of the Eq. S1. In fact, because of the convergence of the series
∞
∑

n=0
ϕn, for any

ψ ∈W1,2 (Ω), based on Eqs. (S2,S3),∫∫
Ω

I∇φ∇ψdxdy =
∫∫

Ω
I∇
(

∞

∑
n=0

ϕn

)
∇ψdxdy =

∫∫
Ω

I
∞

∑
n=0
∇ϕn∇ψdxdy

=
∞

∑
n=0

∫∫
Ω

I∇ϕn∇ψdxdy =
∞

∑
n=0

∫∫
Ω

Imax∇ϕn∇ψdxdy−
∞

∑
n=0

∫∫
Ω
(Imax − I)∇ϕn∇ψdxdy

=
∫∫

Ω
Imax∇ϕ0∇ψdxdy+

∞

∑
n=1

∫∫
Ω
[Imax∇ϕn − (Imax − I)∇ϕn−1]∇ψdxdy

= −
∫∫

Ω
kJ0ψdxdy+

∞

∑
n=1

0 = −
∫∫

Ω
kJ0ψdxdy .

(S19)
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From the arbitrariness of ψ in W1,2 (Ω), we know that φ satisfies the Eq. S2 and on ∂Ω we can obtain

∇φ · ν =

(
∇

∞

∑
n=0

ϕn

)
· ν =

∞

∑
n=0
∇ϕn · ν = β. (S20)

This means that φ satisfies the Neumann boundary condition. From the above arguments, we know that φ is the solution of Eq. S2
with the boundary condition ∇φ · ν = β.
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